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Abstract

Purpose – The purpose of this paper is to present an inverse analysis procedure based on a coupled
numerical formulation through which the coefficients describing non-linear thermal properties of
blood perfusion may be identified.

Design/methodology/approach – The coupled numerical technique involves a combination of the
dual reciprocity boundary element method (DRBEM) and a genetic algorithm (GA) for the solution of
the Pennes bioheat equation. Both linear and quadratic temperature-dependent variations are
considered for the blood perfusion.

Findings – The proposed DRBEM formulation requires no internal discretisation and, in this case, no
internal nodes either, apart from those defining the interface tissue/tumour. It is seen that the skin
temperature variation changes as the blood perfusion increases, and in certain cases flat or nearly flat
curves are produced. The proposed algorithm has difficulty to identify the perfusion parameters in
these cases, although a more advanced genetic algorithm may provide improved results.

Practical implications – The coupled technique allows accurate inverse solutions of the Pennes
bioheat equation for quantitative diagnostics on the physiological conditions of biological bodies and
for optimisation of hyperthermia for cancer therapy.

Originality/value – The proposed technique can be used to guide hyperthermia cancer treatment,
which normally involves heating tissue to 42-438C. When heated up to this range of temperatures, the
blood flow in normal tissues, e.g. skin and muscle, increases significantly, while blood flow in the
tumour zone decreases. Therefore, the consideration of temperature-dependent blood perfusion in this
case is not only essential for the correct modelling of the problem, but also should provide larger skin
temperature variations, making the identification problem easier.
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Introduction
It is well known that the body surface temperature is controlled by blood circulation,
local metabolism and heat transfer between the skin and the environment (Deng and
Liu, 2004a). It is also known that several types of tumours, e.g. skin or breast, can lead
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to an increase in local blood flow, and thus to an increase in the local temperature
(Liu and Xu, 2000). On the other hand, thrombosis or vascular sclerosis decreases the
blood flowing to the skin, resulting in lower skin temperatures (Liu and Xu, 2000).

The Pennes bioheat equation can be used for the quantitative diagnostics of
physiological conditions on biological bodies, e.g. for simulations of regional
hyperthermia for cancer therapy (Tompkins et al., 1994; Erdmann et al., 1998; Lang
et al., 1999). The parameters considered in Pennes’ equation are usually assumed to be
constant except for the blood perfusion, which varies with temperature (Tompkins
et al., 1994; Erdmann et al., 1998; Lang et al., 1999; Rai and Rai, 1999; Liu and Xu, 2000).
Herein, a numerical technique for identification of the temperature-dependent blood
perfusion parameters in Pennes’ equation is proposed based on the dual reciprocity
method (DRM), which has already been used for the direct solution of the bioheat
equation (Deng and Liu, 2000, 2004a, b; Lu et al., 1998; Liu and Xu, 2000). It is assumed
that the size and location of the tumour are known from previous diagnostics; in the
DRM, the tumour is treated as a sub-region and in addition to the nodes used to model
the boundary of the tumour, no other internal points are required.

Previous works on inverse analysis of biological bodies were carried out by Ren et al.
(1995), who applied the boundary element method (BEM) to identify heat sources in
biological bodies based on the simultaneous measurement of temperature and heat flux at
the skin surface, by Majchrzak and Paruch (2004), who estimated the (constant)
thermophysical parameters of a tumour using a least-squares algorithm based on
sensitivity coefficients, and by Partridge and Wrobel (2007), who presented a BEM inverse
analysis based on a genetic algorithm (GA) (Goldberg, 1989; Goldberg et al., 1997) to
identify the position and size of shallow tumours using skin temperature measurements.

This paper extends the algorithm developed by Partridge and Wrobel (2007) for the
identification of the coefficients of linear and quadratic variations of blood perfusion. A
simple GA, as described in the literature (Castro and Partridge, 2006), is adequate for
the problem. A cubic radial basis function is employed as an approximation function
for the DRM, with linear augmentation (Golberg and Chen, 1994; Bridges and Wrobel,
1996; Partridge, 2000). Results of the evolution of the calculations using the GA are
given for one of the cases considered.

The DRM formulation for the bioheat equation is considered in the next section.
This is followed by some results of direct analyses, which illustrate the use of the DRM
and the relationship between the parameters adopted to model blood perfusion and the
temperature distribution on the skin surface. Then, the parameter identification
problem is described and the results of some inverse analyses are presented,
considering linear and quadratic expansions for the blood perfusion rate. The
advantages and limitations of the proposed technique are also discussed.

Application of the dual reciprocity method to the bioheat equation
The Pennes bioheat equation can be written in the following form (Deng and Liu, 2000,
2004a, b; Lu et al., 1998; Liu and Xu, 2000):

rc

k

›T

›t
¼ 72T þ

vbrbcb

k
ðTa 2 TÞ þ

Q

k
; ð1Þ

where r, c and k denote density, specific heat and thermal conductivity of tissue; rb, cb

are density and specific heat of blood, vb is the blood perfusion rate, Ta is the arterial
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blood temperature and Q is metabolic heating. Equation (1) is subject to the usual
boundary conditions for thermal problems:

. prescribed temperature T ¼ �T; and

. prescribed heat flux, q ¼ �q.

Equation (1) can be written, in steady-state form as:

72T ¼ 2
vbrbcb

k
ðTa 2 TÞ2

Q

k
¼ b: ð2Þ

Equation (2) is a Poisson-type equation with two inhomogeneous terms, the first of
which is dependent on the problem variable T, the other term being a function of space
but not of the problem variable. Herein, this equation is solved using the DRM
(Partridge et al., 1992) in which the fundamental solution to the Laplace equation,
u* ¼ 1=2p logð1=rÞ, is employed to treat the term on the left-hand side of equation (2)
and the inhomogeneous terms are taken to the boundary using the standard DRM
(Partridge et al., 1992), leading to the system of equations:

HT 2 Gq ¼ ðHU
_

2GQ
_

Þa; ð3Þ

where the symbols have their usual meaning (Partridge et al., 1992). As the term b in
equation (2) is a function of the problem unknowns, equation (3) can be rewritten as:

HT 2 Gq ¼ ðHU
_

2GQ
_

ÞF21b; ð4Þ

where the F matrix is calculated from the definition of the approximating functions.
Replacing S ¼ ðHU

_
2GQ

_
ÞF21 in equation (4), one obtains:

Ht 2 Gq ¼ Sb: ð5Þ

In the linear case (used here for the healthy tissue), it is possible to define
c1 ¼ vbrbcb=k and c2 ¼ 2ðvbrbcbTa þ QÞ=k, and equation (5) can be written in the
form:

HT 2 Gq ¼ c1ST þ c2S; ð6Þ

or:

ðH 2 c1SÞT 2 Gq ¼ c2S: ð7Þ

For a direct, well-posed problem, boundary conditions (temperature or heat flux) are
applied to equation (7) in the usual way to produce:

Ax ¼ yþ d: ð8Þ

Equation (8) may finally be solved for the unknown boundary values contained in
vector x.

Considering the temperature-dependence of the tumour’s perfusion, vb, the
parameters c1 and c2 are redefined as follows:

c1 ¼ c3vb c2 ¼ 2 c4vb þ
Q

k

� �
; ð9Þ

where c3 ¼ rbcb=k and c4 ¼ rbcbTa=k. When considering a quadratic variation for vb:
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vb ¼ ðaþ bT þ gT 2Þ; ð10Þ

parameters c1 and c2 assume the form:

c1 ¼ c3ðaþ bT þ gT 2Þ c2 ¼ 2c4ðaþ bT þ gT 2Þ2
Q

k
: ð11Þ

Defining a diagonal matrix R with the non-zero terms given by R i ¼ ðaþ b �Ti þ g �T
2
i Þ,

where �Ti are known values of Ti taken from a previous iteration and i is the column and
row number of the main diagonal, equation (11) can be rewritten as:

c1 ¼ c3R c2 ¼ 2 c4Rþ
Q

k

� �
: ð12Þ

Replacing the above expressions into equation (6) finally gives:

HT 2 Gq ¼ c3RST 2 c4Rþ
Q

k

� �
S: ð13Þ

Taking the term with the unknown value of T to the left-hand side in the usual way
produces the final equation:

ðH 2 c3RSÞT 2 Gq ¼ 2 c4Rþ
Q

k

� �
S: ð14Þ

The above equation is solved by iterating on the values of �Ti in matrix R. If a first-order
expansion is considered for vb, g is equal to zero in equations (10) and (11).

A cubic radial basis function, r 3, is used in the DRM approximation, with linear
augmentation terms 1, x and y. The relevant particular solutions are given by (Golberg
and Chen, 1994; Bridges and Wrobel, 1996; Partridge, 2000):

f ¼ r 3; û ¼
r 5

25
; f ¼ 1; û ¼

x 2 þ y 2

4
; f ¼ x; û ¼

x 3

6
; f ¼ y; û ¼

y 3

6
:

The above choice is justified by the results of the tests carried out by Partridge and
Wrobel (2007) with several radial basis functions, including the “classical” function r
and the thin plate spline r 2log r, with and without augmentation. Results obtained
using each of these functions were found to differ little. The tests in Partridge and
Wrobel (2007) also showed that no internal points appear to be necessary in the DRM
formulation for this type of problem. More details about the implementation of
augmentation functions are given by Bridges and Wrobel (1996).

Direct results for different values of the blood perfusion parameters
Considering Figure 1, the external boundary, ABCD orG2, is a vertical section through the
skin tissue, the part AD being at the skin surface while the opposite boundary BC is
considered to be an internal boundary maintained at body temperature, T ¼ 378C.
The boundaries AB and CD are truncation boundaries, at which the boundary condition
q ¼ 0 W/m2 is considered. If the boundary AD is assumed to have a zero flux boundary
condition, this is equivalent to thermal isolation on that boundary, for instance a bandage.
The internal boundary orG1 in Figure 1 is considered to divide the domain into two parts,
V2 the external part and V1 which is a sub-region. On the boundary G1 the usual
compatibility and equilibrium conditions apply, i.e. T1 ¼ T2 and q1 ¼ 2q2. The
thickness of the skin is assumed to be 0.03 m and a section of length 0.08 m is considered.
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In what follows, the parameters c1 and c2 given in equation (6) are considered to be constant
on V2, and taken to be the values for healthy tissue. However, in the sub-region V1,
a non-linear model is considered and different parameters are used for the blood perfusion,
considering this sub-region to be a tumour.

Results employing a first-order expansion
With the boundary condition at the skin surface AD taken to be q ¼ 0 W/m2, values
of the parameters necessary to calculate c1 and c2 for the healthy tissue are taken
from Liu and Xu (2000): rb ¼ 1,000 kg/m3, cb ¼ 4,000 J/(kg 8C), k ¼ 0.5 W/(m 8C),
vb ¼ 0.0005 mlb/mlt/s and Q ¼ 420 J/(m3 s). For the tumour, the same values of rb, cb

and k are taken, with Q ¼ 4,200 J/(m3 s). The unit employed for the perfusion coefficient
vb is such that rbvb represents mass flow rate of blood per unit volume of tissue.

Initially, a first-order expansion for the blood perfusion is considered,vb ¼ ðaþ bTÞ.
Following Deng and Liu (2000), possible variations which the coefficients a and b might
take are as follows:

. vb ¼ 0:0005 þ 0:0001T ;

. vb ¼ 0:005 þ 0:0001T ; and

. vb ¼ 0:005 þ 0:0003T:

According to equation (9), the parameter vb always appears multiplied by rbcb/k.
Using the above numerical values gives the following expressions:

. c1 ¼ 800 £ ð5 þ 1TÞ;

. c1 ¼ 800 £ ð50 þ 1TÞ; and

. c1 ¼ 800 £ ð50 þ 3TÞ:

Similar considerations are valid for the parameter c2.

Figure 1.
Tumour within a matrix

of healthy tissue0.03m

0.08m

D C

A

y

x

Ω2

Ω1
Γ1 Γ2

B Identification of
blood perfusion

parameters

29



The discretisation adopted involves 16 linear elements along the internal boundary
G1 and 56 linear elements along G2. Sensitivity tests were performed with different
discretisations; for instance, using half the above number, i.e. eight linear elements
along G1 and 28 linear elements along G2, produces results which are virtually the same
as those in Table I.

Results for different first-order variations for the tumour perfusion are given in Table I.
The table shows temperature values at the skin surface, boundary AD in Figure 1. It can be
seen that the temperature variation in all cases is very small. The results for curves B, C
and D are flat or nearly so and the curvature changes for curves E and F, in the sense that
the temperatures at the centre points are lower than at the end points.

Since the temperature is almost constant in all cases, around 378C, the average value of
the tumour perfusion for the linear variations considered are vb ¼ 0.00195 mlb/mlt/s for
curve A, vb ¼ 0.0042 mlb/mlt/s for curve B, vb ¼ 0.00655 mlb/mlt/s for curve C,
vb ¼ 0.094 mlb /mlt /s for curve D, vb ¼ 0.0141 mlb /mlt /s for curve E and
vb ¼ 0.0161 mlb/mlt/s for curve F. The values for curves D, E and F are high compared
to average tumour perfusion values of vb ¼ 0.002 mlb/mlt/s quoted in the literature
(Liu and Xu, 2000), explaining the unexpected results obtained with these curves.

Results employing a second-order expansion
Next, a second-order temperature-dependence for the tumour perfusion is considered.
Results in Table II also show slight temperature variations at the skin surface,
boundary AD in Figure 1, for all expansions adopted, which were chosen in order to
cover a range of values similar to those in the first-order case. It can be seen that the
results for curve H are flat and that for curves I and J have a different curvature from
curve G. The interpretation of these results is as discussed above.

Procedure for identification of blood perfusion parameters
GAs are ideally suited to the inverse problem of identifying the parameters used in the
temperature-dependence expansions for blood perfusion (Ren et al., 1995; Majchrzak
and Paruch, 2004). The method is of an evolutionary type, based on the process of
natural selection, requiring no initial guess about the values of the parameters. It is
necessary to know only the range of values that these might take in order to choose the
number of bits to allocate in each chromosome. No calculations of derivatives,
sensitivities or directions in which to search are required.

In this work, a simple GA detailed in Castro and Partridge (2006) has been implemented.
The geometry of each tumour is initially considered to be rectangular, of size
0.01 £ 0.02 m, with its centre at position (0.01, 0.0) as shown in Figure 1. The size of
the initial population of chromosomes is defined considering the range of values
which the parameters used to calculate c1 in Tables I and II might take. The highest
first-order expansion, curve F, has c1 ¼ 800 £ ð50 þ 3:0T Þ. If this is written as
c1 ¼ 800 £ ð p1 þ p2TÞ, then p1 will take positive integer values up to 50 and the largest
value of p2 is 3, with an interval of 0.1 considered between successive values. Regarding the
second-order expansions, c1 ¼ 800 £ ð p1 þ p2T þ p3T

2Þ, p1 takes values up to 7, p2 takes
values up to 1.9, and an interval of 0.1 is considered between successive values. The highest
value for parameter p3 is 0.07, with an interval of 0.01 between successive values.

Thus, for the first-order approximation, and considering the values of the
coefficients given in Table I, the chromosome has two alleles; for p1 and p2 the first
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allele has 6 bits, 26 2 1 ¼ 63 . 50, while the second has 5 bits, in such a way that the
largest number which can be represented is 3.1 for intervals of 0.1. For the second-order
approximation, and considering the values of the coefficients given in Table II, each
chromosome has three alleles for the values p1, p2 and p3, the first and third alleles
having 3 bits and the second 5 bits. Thus, in both cases, the chromosome is of size 11.
The parameter p1 is calculated directly by converting the binary value of the allele to
decimal; for p2, the decimal value of the allele is divided by 10, and for p3 the decimal
value is divided by 100. The population size was fixed at 20, which is within the
guidelines established by Kahn (2002), who suggested that this value should be
between ‘ and 2‘ where ‘ is the size of the chromosome.

After establishing an initial population, the values of p1, p2 and p3 for each
chromosome are obtained as considered above, and results for the temperature
distribution at the skin surface (nodes along the part AD of the G2 boundary in Figure 1)
are calculated using the dual reciprocity boundary element method and a genetic
algorithm (DRBEM). The objective of the algorithm is to minimise the value of the sum of
the squares of the differences between the temperatures calculated at the surface nodes
and the predetermined values corresponding to given values of p1, p2 and p3.
The chromosomes are ordered according to the value of the sum of the squares, with the
smallest value first, the position in this new order being considered the fitness.
Individuals are selected for crossover using the roulette wheel method described by
Goldberg (1989), the fitter individuals having the greater probability of selection. The
probability of crossover is 80 per cent. Two point crossover and mutation with a
probability of 1 per cent is carried out, following the results in Goldberg et al. (1997).
A process of elitism is employed by which the best individual from one generation passes
automatically to the next, in order to ensure that the best solution is not lost. A maximum
of 100 generations is permitted; if the process has not converged after this, iterations
are halted. The stopping criterion considered is that 80 per cent of the individuals in the
fitness table must have converged to the same value. The evolution of the results obtained
using the GA is illustrated in the next section for one of the examples considered.

Some results for the identification of perfusion parameters
Considering the geometry shown in Figure 1, in which a 0.08 m section of tissue of
thickness 0.03 m is considered with the tumour in the position shown, the temperature
values for part AD of the G2 boundary for the inverse analysis are fixed using the values
given in Tables I and II. These values are compared with those calculated for each
tentative set of perfusion parameters indicated by the chromosomes in the GA, and the
sum of the squares of the differences minimised. Similar to the direct simulations, the
boundaryG2 is discretised with 56 linear boundary elements and the boundaryG1 with 16.

Results considering a first-order approximation
It is considered that c1 in equation (11) is given by c1 ¼ 800 £ ð p1 þ p2TÞ and the
parameters p1 and p2 are identified. The temperature values used as input on the skin
surface are taken from Table I.

Case 1. In this case, the data for the measured temperatures on the skin surface are
taken from curve A. The results produced by the GA were p1 ¼ 1 and p2 ¼ 0.6, and
converged in 31 generations. The data used to generate the values at the skin surface
are p1 ¼ 1 and p2 ¼ 0.5.
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No convergence was obtained for curves B to D as these curves are flat or nearly
flat, and the resulting surface temperatures constant or nearly constant.

Case 2. In this case, the data for the measured temperatures on the skin surface are taken
from curve E. Although the results are physically unrealistic since the tumour perfusion is
too high, it is possible to identify the perfusion parameters due to the surface temperature
variations. The results produced by the GA were p1 ¼ 31 and p2 ¼ 2.9, and converged in 21
generations. The data used to generate the values at the skin surface arep1 ¼ 30 andp2 ¼ 3.
The evolution of the results obtained using the GA is considered at the end of the section.

Case 3. In this case, the data for the measured temperatures on the skin surface are
taken from curve F. The results produced by the GA were p1 ¼ 56 and p2 ¼ 2.9, and
converged in 21 generations. The data used to generate the values at the skin surface
are p1 ¼ 50 and p2 ¼ 3.

Results using a second-order approximation
It is considered that c1 in equation (11) is given by c1 ¼ 800 £ ð p1 þ p2T þ p3T

2Þ and
the parameters p1, p2 and p3 are identified. The temperature values used as input on the
skin surface are taken from Table II.

Case 4. In this case, the data for the measured temperatures on the skin surface are
taken from curve G. The results produced by the GA were p1 ¼ 0, p2 ¼ 0.6 and
p3 ¼ 0.01. Results converged in 25 generations. The data used to generate the input on
the skin surface are p1 ¼ 3, p2 ¼ 0.5 and p3 ¼ 0.01.

No convergence was obtained for curve H as this curve is nearly flat, and the
resulting surface temperatures nearly constant.

Case 5. In this case, the data for the measured temperatures on the skin surface are
taken from curve I. The results produced by the GA were p1 ¼ 2, p2 ¼ 1.2 and
p3 ¼ 0.05. Results converged in 21 generations. The data used to generate the values on
the skin surface are p1 ¼ 2, p2 ¼ 1.5 and p3 ¼ 0.04.

Case 6. In this case, the data for the measured temperatures on the skin surface are
taken from curve J. The results produced by the GA were p1 ¼ 2, p2 ¼ 2.1 and
p3 ¼ 0.07. Results converged in 32 generations. The data used to generate the values on
the skin surface are p1 ¼ 7, p2 ¼ 1.9 and p3 ¼ 0.07.

Evolution of GA results for case 2
As the initial population in the GA is generated randomly, the predicted values of p1 and
p2 display a large scatter, as shown in Figure 2(a). There is already considerable
improvement after five generations (Figure 2(b)), and much improvement after ten
generations (Figure 2(c)), with 70 per cent of chromosomes predicting the solution
p1 ¼ 30, p2 ¼ 2.9. The process is considered to have converged after 21 generations
(Figure 2(d)), with 85 per cent of the solutions producing the same values p1 ¼ 31,
p2 ¼ 2.9, compared to the correct solution p1 ¼ 30, p2 ¼ 3. In this case, however, we
extended the simulations to obtain convergence of 100 per cent of the chromosomes; the
converged values, p1 ¼ 31, p2 ¼ 2.9, were obtained after 36 generations (Figure 2(e)).

Results for a circular tumour
A circular tumour of radius 0.01 was next analysed. The centre of the tumour was located
at position (0.015, 0.0), and its discretisation used 16 nodes. The total discretisation thus
has the same number of nodes and elements as for the rectangular tumours.

HFF
19,1

34



Initially, a direct simulation was carried out to obtain the temperature distribution at
the skin surface using first-order tumour perfusion. Results for three different cases are
shown in Table III. The curve labels refer to the variations defined in Table I.

It can be seen, by comparison with Table I, that the results differ little from those for
a rectangular tumour.

For the inverse analysis, data for the measured temperatures on the skin surface are
initially taken from curve A in Table III. The results produced by the GA were p1 ¼ 0
and p2 ¼ 0.6, and converged in 31 generations. The data used to generate the values at
the skin surface are p1 ¼ 1 and p2 ¼ 0.5.

Next, skin temperature data are taken from curve E. The results produced by the
GA were p1 ¼ 25 and p2 ¼ 3.1, and converged in 43 generations. The data used to
generate the values at the skin surface are p1 ¼ 30 and p2 ¼ 3. Finally, skin
temperature data are taken from curve F. The results produced by the GA were
p1 ¼ 47 and p2 ¼ 3.0, and also converged in 43 generations. The data used to generate
the values at the skin surface are p1 ¼ 50 and p2 ¼ 3.

Figure 2.
Evolution of GA results

for curve E in Table I
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Conclusions
In this paper, the DRBEM was coupled to a GA in an inverse procedure for identifying
parameters of a temperature-dependent approximation for the tumour perfusion,
considering temperature data on the skin surface. The procedure has the advantage of
not requiring the calculation of derivatives or sensitivities, or an initial estimate of
these values. The DRBEM formulation requires no internal discretisation, and in this
case no internal nodes either, apart from those defining the interface tissue/tumour.
The technique can be directly extended to more realistic 3D inverse analysis
estimations, at an increased computational cost.

It is seen that the skin temperature variation changes as the blood perfusion
increases, and in certain cases flat or nearly flat curves are produced. The proposed
algorithm has difficulty to identify the perfusion parameters in these cases, although a
more advanced GA may provide improved results.

Hyperthermia cancer treatment normally involves heating tissue to 42-438C. This
is achieved through the use of electromagnetic waves, and should be designed to
avoid “hot spots” in healthy tissue and “cold spots” in the tumour region. When
heated up to this range of temperatures, the blood flow in normal tissues, e.g. skin
and muscle, increases significantly, while blood flow in the tumour zone decreases
(Erdmann et al., 1998). Therefore, the consideration of temperature-dependent blood
perfusion in this case is not only essential for the correct modelling of the problem,
but also should provide larger skin temperature variations, making the
identification problem easier.
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